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Abstract : The condensation of phenylaziridines (3a/3b) with 3-cyclopentenylsilane (4) in presence of BF3.Et20
yielded amino-cyclopentenyl adducts (5a-8a) and (5b-8b). Heterocyclisation of the w-amino-olefins assisted by
Pd(OAc)2 afforded the azabicyclo adducts 2a/2'a and 2b/2'b. Oxidation of the internal double bond, followed by
epimerization at C(2) was realized by KH in presence of 18-crown-6 yielding 11, the fully protected phenylkainic acid.
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Kainic acid is a conformationally restricted analogue of the endogenous mammalian
neurotransmitter glutamic acid and has been used for the identification of a specific binding site
among the glutamate receptors.2 Structure/activity studies performed on kainic acid revealed that
the configurations of the three adjacent stereocenters is of crucial importance.3 Furthermore the
replacement of the isopropenyl at C(4) by a phenyl residue, giving phenylkainic acid (1), enhanced
considerably the biological potency.4 This observation has stimulated the design of various
syntheses of phenylkainoids.56
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In this letter, we report our approach to the synthesis of (+)-1. The retrosynthetic plan, depicted in
Scheme 1, is based on the disconnection of two bonds N(1) and C(2), and C(3) and C(4). The key
compounds 2a/b could be prepared by the reaction of phenylaziridines (3a/b) with
cyclopentenylallylsilane (4), as activated phenylaziridines can be regioselectively opened by mild
nucleophiles such as allylsilanes.” Some comments have to be made first : (i) in preliminary
experiments, the tosyl group was used to activate the aziridinyl nitrogen, but the nosyl group was
prefered for its easier manipulation in the deprotection step;® (ii) in the present work all the
compounds are in racemic form. The starting materials are easily accessible : the aziridines 3a/b by
using an aziridination procedure of styrene,® and the allysilane 4 from 3-chlorocyclopentene.? The
reaction between 3a/b and 4 was performed in CH,Cl; at 0°C in presence of 0.3 to 1 equivalent of
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BF3.0Et; for 4 h. The products, after purification by column chromatography over silica gel, were
carrefully analyzed by NMR spectroscopy. Two separable sets of diastereomers were obtained with
the tosyl protection, the first one corresponding to a mixture of the inseparable azabicyclo adducts
5a/6a (8/1 : 30%), and the other one to inseparable amino-olefins 7a/8a (1/3 : 42%); with the nosyl
protection, similar results were obtained : 5b/6b (4/1 : 15%) and 7b/8b (1/1 : 45%). Each set of
diastereomers was analysed by COSY and NOESY experiments which permitted not only to
determine the mixture composition but to attribute the relative configuration of each component (see
Scheme 2). For instance 5a, the major diastereomer in the 5a/6a mixture has been identified as the
exo/exo adduct, and 6a, the minor diastereomer as the corresponding endo/exo adduct.
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Finally a brief treatment in refluxing TBAF of the azabicycles (5a/6a or 5b/6b) produced the
related desilylated adducts 7a/8a and 7b/7b for which the configuration was assigned by direct
correlation (Scheme 2).11 From the composition of the above mixtures the following points are
deduced : (i) after the opening of the aziridine, two chemical pathways have to be considered : (a) the
internal quenching of the B-silicon cation by the transient amide produces 5a/6a or 5b/6b or (b)
desilylation producing 7a/8a or 7b/8b, (ii) the diastereomeric enrichment in each set suggests that
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different stereoelectronic factors operate in the two pathways. This last observation would be useful,
if one could find experimental conditions for a better diastereomeric enrichment. Some attempts
(change of the nature of the Lewis acid, stoechiometry or temperature) to increase the amount of the
major diastereomer in each mixture failed.
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The synthesis was pursued in the following way : the four component mixtures (5a-8a) and (5b-
8b) was refluxed in a TBAF solution in THF (1 M) yielding a two component mixtures (7a-8a) and
(7b-8b) which were submitted to an intramolecular heterocyclisation assisted by Pd(OAc)212 to yield
quantitatively the azabicycles 2a-2'a and 2b-2'b. At this stage each diastereomer could be obtained
pure after column chromatography. Compound 2b, with the suitable configuration for the kainoid
system, was chosen to perform the final steps of our synthesis. Oxidation of the intramolecular
double bound to the diacid was best realized under Sharpless conditions!3 affording diester 9b, after
diazomethane treatment. The nosyl protection was exchanged for the Cbz group to reach 10.4. As
none of the reported conditions for the epimerization at C(2) applied to 10 was satisfactory in our
hands, we found that the epimerization could be realized with KH (3 eq.) and 18-crown-6 (0.1 eq) in
CgHg (0.03 M) at room temperature for 48 h with concomittant saponification. An additionnal
treatment with diazomethane furnished 11. The final transformation to (+)-1 has already been
described by Shirahama.#
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In conclusion, we have presented a new and short approach to ()-phenylkainic acid, with
some merits over the existing syntheses : (i) cheap starting materials : phenylaziridine and 3-
cyclopentenysilane, (ii) a short sequence (3 steps) to reach the substituted pyrrolidine ring, and (iii) a
new procedure for the epimerization at C(2).
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